Improving the interoperability of web services is an important and worthy goal. We believe that it should be easier for people to maintain and control their digital identities. And we appreciate that policymakers working on European Union digital certificate legislation, known as eIDAS, are working toward this goal. However, a specific part of the legislation, Article 45, hinders browsers’ ability to enforce certain security requirements on certificates, potentially holding back advances in web security for decades. We and many past and present leaders in the international web community have significant concerns about Article 45’s impact on security.

We urge lawmakers to heed the calls of scientists and security experts to revise this part of the legislation rather than erode users’ privacy and security on the web.

Various questions linger following the botnet’s sudden and deliberate demise, including: who actually initiated it?

Global Diversity Awareness Month is a timely occasion to reflect on the steps required to remove the obstacles to women’s participation in the security industry, as well as to consider the value of inclusion and diversity in the security workforce.

Cybersecurity Awareness Month draws to a close and Halloween is just around the corner, so here is a bunch of spine-tingling figures about some very real tricks and threats lurking online

The zero-day exploit deployed by the Winter Vivern APT group only requires that the target views a specially crafted message in a web browser

New AI innovations and applications are reaching consumers and businesses on an almost-daily basis. Building AI securely is a paramount concern, and we believe that Google’s Secure AI Framework (SAIF) can help chart a path for creating AI applications that users can trust. Today, we’re highlighting two new ways to make information about AI supply chain security universally discoverable and verifiable, so that AI can be created and used responsibly. 



The first principle of SAIF is to ensure that the AI ecosystem has strong security foundations. In particular, the software supply chains for components specific to AI development, such as machine learning models, need to be secured against threats including model tampering, data poisoning, and the production of harmful content



Even as machine learning and artificial intelligence continue to evolve rapidly, some solutions are now within reach of ML creators. We’re building on our prior work with the Open Source Security Foundation to show how ML model creators can and should protect against ML supply chain attacks by using SLSA and Sigstore.



Supply chain security for ML


For supply chain security of conventional software (software that does not use ML), we usually consider questions like:

  • Who published the software? Are they trustworthy? Did they use safe practices?
  • For open source software, what was the source code?
  • What dependencies went into building that software?
  • Could the software have been replaced by a tampered version following publication? Could this have occurred during build time?


All of these questions also apply to the hundreds of free ML models that are available for use on the internet. Using an ML model means trusting every part of it, just as you would any other piece of software. This includes concerns such as:


  • Who published the model? Are they trustworthy? Did they use safe practices?
  • For open source models, what was the training code?
  • What datasets went into training that model?
  • Could the model have been replaced by a tampered version following publication? Could this have occurred during training time?


We should treat tampering of ML models with the same severity as we treat injection of malware into conventional software. In fact, since models are programs, many allow the same types of arbitrary code execution exploits that are leveraged for attacks on conventional software. Furthermore, a tampered model could leak or steal data, cause harm from biases, or spread dangerous misinformation. 



Inspection of an ML model is insufficient to determine whether bad behaviors were injected. This is similar to trying to reverse engineer an executable to identify malware. To protect supply chains at scale, we need to know how the model or software was created to answer the questions above.



Solutions for ML supply chain security


In recent years, we’ve seen how providing public and verifiable information about what happens during different stages of software development is an effective method of protecting conventional software against supply chain attacks. This supply chain transparency offers protection and insights with:


  • Digital signatures, such as those from Sigstore, which allow users to verify that the software wasn’t tampered with or replaced
  • Metadata such as SLSA provenance that tell us what’s in software and how it was built, allowing consumers to ensure license compatibility, identify known vulnerabilities, and detect more advanced threats



Together, these solutions help combat the enormous uptick in supply chain attacks that have turned every step in the software development lifecycle into a potential target for malicious activity.



We believe transparency throughout the development lifecycle will also help secure ML models, since ML model development follows a similar lifecycle as for regular software artifacts:



Similarities between software development and ML model development



An ML training process can be thought of as a “build:” it transforms some input data to some output data. Similarly, training data can be thought of as a “dependency:” it is data that is used during the build process. Because of the similarity in the development lifecycles, the same software supply chain attack vectors that threaten software development also apply to model development: 



Attack vectors on ML through the lens of the ML supply chain



Based on the similarities in development lifecycle and threat vectors, we propose applying the same supply chain solutions from SLSA and Sigstore to ML models to similarly protect them against supply chain attacks.



Sigstore for ML models



Code signing is a critical step in supply chain security. It identifies the producer of a piece of software and prevents tampering after publication. But normally code signing is difficult to set up—producers need to manage and rotate keys, set up infrastructure for verification, and instruct consumers on how to verify. Often times secrets are also leaked since security is hard to get right during the process.



We suggest bypassing these challenges by using Sigstore, a collection of tools and services that make code signing secure and easy. Sigstore allows any software producer to sign their software by simply using an OpenID Connect token bound to either a workload or developer identity—all without the need to manage or rotate long-lived secrets.



So how would signing ML models benefit users? By signing models after training, we can assure users that they have the exact model that the builder (aka “trainer”) uploaded. Signing models discourages model hub owners from swapping models, addresses the issue of a model hub compromise, and can help prevent users from being tricked into using a bad model. 



Model signatures make attacks similar to PoisonGPT detectable. The tampered models will either fail signature verification or can be directly traced back to the malicious actor. Our current work to encourage this industry standard includes:




  • Having ML frameworks integrate signing and verification in the model save/load APIs
  • Having ML model hubs add a badge to all signed models, thus guiding users towards signed models and incentivizing signatures from model developers
  • Scaling model signing for LLMs 



SLSA for ML Supply Chain Integrity



Signing with Sigstore provides users with confidence in the models that they are using, but it cannot answer every question they have about the model. SLSA goes a step further to provide more meaning behind those signatures. 



SLSA (Supply-chain Levels for Software Artifacts) is a specification for describing how a software artifact was built. SLSA-enabled build platforms implement controls to prevent tampering and output signed provenance describing how the software artifact was produced, including all build inputs. This way, SLSA provides trustworthy metadata about what went into a software artifact.



Applying SLSA to ML could provide similar information about an ML model’s supply chain and address attack vectors not covered by model signing, such as compromised source control, compromised training process, and vulnerability injection. Our vision is to include specific ML information in a SLSA provenance file, which would help users spot an undertrained model or one trained on bad data. Upon detecting a vulnerability in an ML framework, users can quickly identify which models need to be retrained, thus reducing costs.



We don’t need special ML extensions for SLSA. Since an ML training process is a build (shown in the earlier diagram), we can apply the existing SLSA guidelines to ML training. The ML training process should be hardened against tampering and output provenance just like a conventional build process. More work on SLSA is needed to make it fully useful and applicable to ML, particularly around describing dependencies such as datasets and pretrained models.  Most of these efforts will also benefit conventional software.



For models training on pipelines that do not require GPUs/TPUs, using an existing, SLSA-enabled build platform is a simple solution. For example, Google Cloud Build, GitHub Actions, or GitLab CI are all generally available SLSA-enabled build platforms. It is possible to run an ML training step on one of these platforms to make all of the built-in supply chain security features available to conventional software.



How to do model signing and SLSA for ML today



By incorporating supply chain security into the ML development lifecycle now, while the problem space is still unfolding, we can jumpstart work with the open source community to establish industry standards to solve pressing problems. This effort is already underway and available for testing.  



Our repository of tooling for model signing and experimental SLSA provenance support for smaller ML models is available now. Our future ML framework and model hub integrations will be released in this repository as well. 



We welcome collaboration with the ML community and are looking forward to reaching consensus on how to best integrate supply chain protection standards into existing tooling (such as Model Cards). If you have feedback or ideas, please feel free to open an issue and let us know. 

In September, we shared how we are implementing the voluntary AI commitments that we and others in industry made at the White House in July. One of the most important developments involves expanding our existing Bug Hunter Program to foster third-party discovery and reporting of issues and vulnerabilities specific to our AI systems. Today, we’re publishing more details on these new reward program elements for the first time. Last year we issued over $12 million in rewards to security researchers who tested our products for vulnerabilities, and we expect today’s announcement to fuel even greater collaboration for years to come. 



What’s in scope for rewards 

In our recent AI Red Team report, we identified common tactics, techniques, and procedures (TTPs) that we consider most relevant and realistic for real-world adversaries to use against AI systems. The following table incorporates shared learnings from Google’s AI Red Team exercises to help the research community better understand what’s in scope for our reward program. We’re detailing our criteria for AI bug reports to assist our bug hunting community in effectively testing the safety and security of AI products. Our scope aims to facilitate testing for traditional security vulnerabilities as well as risks specific to AI systems. It is important to note that reward amounts are dependent on severity of the attack scenario and the type of target affected (go here for more information on our reward table). 




Category

Attack Scenario

Guidance

Prompt Attacks: Crafting adversarial prompts that allow an adversary to influence the behavior of the model, and hence the output in ways that were not intended by the application.

Prompt injections that are invisible to victims and change the state of the victim’s account or or any of their assets.

In Scope

Prompt injections into any tools in which the response is used to make decisions that directly affect victim users.

In Scope

Prompt or preamble extraction in which a user is able to extract the initial prompt used to prime the model only when sensitive information is present in the extracted preamble.

In Scope

Using a product to generate violative, misleading, or factually incorrect content in your own session: e.g. ‘jailbreaks’. This includes ‘hallucinations’ and factually inaccurate responses. Google’s generative AI products already have a dedicated reporting channel for these types of content issues.

Out of Scope

Training Data Extraction: Attacks that are able to successfully reconstruct verbatim training examples that contain sensitive information. Also called membership inference.

Training data extraction that reconstructs items used in the training data set that leak sensitive, non-public information.

In Scope

Extraction that reconstructs nonsensitive/public information.

Out of Scope

Manipulating Models: An attacker able to covertly change the behavior of a model such that they can trigger pre-defined adversarial behaviors.

Adversarial output or behavior that an attacker can reliably trigger via specific input in a model owned and operated by Google (“backdoors”). Only in-scope when a model’s output is used to change the state of a victim’s account or data. 

In Scope

Attacks in which an attacker manipulates the training data of the model to influence the model’s output in a victim’s session according to the attacker’s preference. Only in-scope when a model’s output is used to change the state of a victim’s account or data. 

In Scope

Adversarial Perturbation: Inputs that are provided to a model that results in a deterministic, but highly unexpected output from the model.

Contexts in which an adversary can reliably trigger a misclassification in a security control that can be abused for malicious use or adversarial gain. 

In Scope

Contexts in which a model’s incorrect output or classification does not pose a compelling attack scenario or feasible path to Google or user harm.

Out of Scope

Model Theft / Exfiltration: AI models often include sensitive intellectual property, so we place a high priority on protecting these assets. Exfiltration attacks allow attackers to steal details about a model such as its architecture or weights.

Attacks in which the exact architecture or weights of a confidential/proprietary model are extracted.

In Scope

Attacks in which the architecture and weights are not extracted precisely, or when they’re extracted from a non-confidential model.

Out of Scope

If you find a flaw in an AI-powered tool other than what is listed above, you can still submit, provided that it meets the qualifications listed on our program page.

A bug or behavior that clearly meets our qualifications for a valid security or abuse issue.

In Scope

Using an AI product to do something potentially harmful that is already possible with other tools. For example, finding a vulnerability in open source software (already possible using publicly-available static analysis tools) and producing the answer to a harmful question when the answer is already available online.

Out of Scope

As consistent with our program, issues that we already know about are not eligible for reward.

Out of Scope

Potential copyright issues: findings in which products return content appearing to be copyright-protected. Google’s generative AI products already have a dedicated reporting channel for these types of content issues.

Out of Scope


Conclusion 

We look forward to continuing our work with the research community to discover and fix security and abuse issues in our AI-powered features. If you find a qualifying issue, please go to our Bug Hunter website to send us your bug report and–if the issue is found to be valid–be rewarded for helping us keep our users safe.

An overview of the activities of selected APT groups investigated and analyzed by ESET Research in Q2 and Q3 2023

Last week at Singapore International Cyber Week and the ETSI Security Conferences, the international community gathered together to discuss cybersecurity hot topics of the day. Amidst a number of important cybersecurity discussions, we want to highlight progress on connected device security demonstrated by  joint industry principles for IoT security transparency. The future of connected devices offers tremendous potential for innovation and quality of life improvements. Putting a spotlight on consumer IoT security is a key aspect of achieving these benefits. Marketplace competition can be an important driver of security improvements, with consumers empowered and motivated to make informed purchasing decisions based on device security. 

As with other IoT security transparency initiatives globally, it’s great to see this topic being covered at both conferences this week. The below IoT security labeling principles are aimed at helping to improve consumer awareness and to foster marketplace competition based on security.

To help consumers make an informed purchase decision they should receive clear, consistent, and actionable information about the security of the device (e.g. security support period, authentication support, cryptographic assurance) before purchase – a communication and transparency mechanism commonly referred to as “a label” or “labeling,” although the communication is not merely a printed sticker on physical product packaging. While an IoT label will not solve the problem of IoT security on its own, transparency can both help educate consumers and also facilitate the coordination of security responsibilities between all of the components in a connected device ecosystem.

Our goal is to strengthen the security of IoT devices and ecosystems to protect individuals and organizations, and to unleash the full future benefit of IoT. Security labeling programs can support consumer purchase decisions that drive security improvements, but only if the label is credible, actionable, and easily understood. We are hopeful that the public sector and industry can work together to drive harmonized policies that achieve this goal. 

Signed,

Google

ARM

Assa Abloy

Finite State

HackerOne

Keysight

NXP

OpenPolicy

Rapid7

Schlage

Silicon Labs

ESET Research recommends updating Roundcube Webmail to the latest available version as soon as possible