In 2020, we integrated kCTF into Google’s Vulnerability Rewards Program (VRP) to support researchers evaluating the security of Google Kubernetes Engine (GKE) and the underlying Linux kernel. As the Linux kernel is a key component not just for Google, but for the Internet, we started heavily investing in this area. We extended the VRP’s scope and maximum reward in 2021 (to $50k), then again in February 2022 (to $91k), and finally in August 2022 (to $133k). In 2022, we also summarized our learnings to date in our cookbook, and introduced our experimental mitigations for the most common exploitation techniques.


In this post, we’d like to share our learnings and statistics about the latest Linux kernel exploit submissions, how effective our mitigations are against them, what we do to protect our users, and, finally, how we are changing our program to align incentives to the areas we are most interested in.



Learnings and Statistics


Since its inception, the program has rewarded researchers with a total of 1.8 million USD, and in the past year, there has been a clear trend: 60% of the submissions exploited the io_uring component of the Linux kernel (we paid out around 1 million USD for io_uring alone). Furthermore, io_uring vulnerabilities were used in all the submissions which bypassed our mitigations.

 

Limiting io_uring

To protect our users, we decided to limit the usage of io_uring in Google products: 



While io_uring brings performance benefits, and promptly reacts to security issues with comprehensive security fixes (like backporting the 5.15 version to the 5.10 stable tree), it is a fairly new part of the kernel. As such, io_uring continues to be actively developed, but it is still affected by severe vulnerabilities and also provides strong exploitation primitives. For these reasons, we currently consider it safe only for use by trusted components.



Transparency

Currently, we make vulnerability details public on our spreadsheet (which now also includes CVE details), and we have summarized different exploitation techniques in our cookbook. In the future, to make our efforts more transparent and give faster feedback to the community, we will ask researchers to open-source their submissions, including the code they used.



Introducing kernelCTF

To better align incentives with our areas of interest, we are shifting our focus from GKE and kCTF to the latest stable kernel and our mitigations. As a result, starting today we will handle kernel exploit submissions under a new name, “kernelCTF,” with its own reward structure and submission process. The maximum total payout for kernelCTF is still $133,337 per submission. While the specific GKE kernel configuration is still covered by the new kernelCTF, exploits affecting non-kernel components like the full GKE stack (including Kubernetes), the container runtime, and GKE itself, are now separately eligible for vulnerability rewards under the kCTF VRP which is returning to its original reward amounts and conditions.

Conclusion

Our goal remains the same: we are building a pipeline to analyze, experiment, measure, and build security mitigations to make the Linux kernel as safe as possible, with the help of the security community. We hope that over time, we will be able to implement security mitigations that make it more difficult to exploit Linux kernel vulnerabilities.

With the name change, we have moved our communication channel to #kernelctf on Discord, with a separate #kernelctf-announcements channel. Please join us there for the latest updates regarding kernelCTF.

While not a ‘get out of jail free card’ for your business, cyber insurance can help insulate it from the financial impact of a cyber-incident

The post Cyber insurance 101: what is it and does my company need it? appeared first on WeLiveSecurity

A crimeware group that usually targets individuals and SMBs in North America and Europe adds cyberespionage to its activities

The post Mixing cybercrime and cyberespionage – Week in security with Tony Anscombe appeared first on WeLiveSecurity

A curious case of a threat actor at the border between crimeware and cyberespionage

The post Asylum Ambuscade: crimeware or cyberespionage? appeared first on WeLiveSecurity

How  your voice assistant could do the bidding of a hacker – without you ever hearing a thing

The post Hear no evil: Ultrasound attacks on voice assistants appeared first on WeLiveSecurity

Plus, 7 ways to tell that you downloaded a sketchy app and 7 tips for staying safe from mobile security threats in the future

The post 7 tips for spotting a fake mobile app appeared first on WeLiveSecurity

Given the reliance of today’s digital world on APIs and the fact that attacks targeting them continue to rise sharply, API security cannot be an afterthought.

The post API security in the spotlight – Week in security with Tony Anscombe appeared first on WeLiveSecurity

For 13 years, a key pillar of the Chrome Security ecosystem has included encouraging security researchers to find security vulnerabilities in Chrome browser and report them to us, through the Chrome Vulnerability Rewards Program.

Starting today and until 1 December 2023, the first security bug report we receive with a functional full chain exploit, resulting in a Chrome sandbox escape, is eligible for triple the full reward amount. Your full chain exploit could result in a reward up to $180,000 (potentially more with other bonuses).

Any subsequent full chains submitted during this time are eligible for double the full reward amount!

We have historically put a premium on reports with exploits – “high quality reports with a functional exploit” is the highest tier of reward amounts in our Vulnerability Rewards Program. Over the years, the threat model of Chrome browser has evolved as features have matured and new features and new mitigations, such a MiraclePtr, have been introduced. Given these evolutions, we’re always interested in explorations of new and novel approaches to fully exploit Chrome browser and we want to provide opportunities to better incentivize this type of research. These exploits provide us valuable insight into the potential attack vectors for exploiting Chrome, and allow us to identify strategies for better hardening specific Chrome features and ideas for future broad-scale mitigation strategies.

The full details of this bonus opportunity are available on the Chrome VRP rules and rewards page. The summary is as follows:

  • The bug reports may be submitted in advance while exploit development continues during this 180-day window. The functional exploits must be submitted to Chrome by the end of the 180-day window to be eligible for the triple or double reward.
    • The first functional full chain exploit we receive is eligible for the triple reward amount.
  • The full chain exploit must result in a Chrome browser sandbox escape, with a demonstration of attacker control / code execution outside of the sandbox.
  • Exploitation must be able to be performed remotely and no or very limited reliance on user interaction.
  • The exploit must have been functional in an active release channel of Chrome (Dev, Beta, Stable, Extended Stable) at the time of the initial reports of the bugs in that chain. Please do not submit exploits developed from publicly disclosed security bugs or other artifacts in old, past versions of Chrome.

As is consistent with our general rewards policy, if the exploit allows for remote code execution (RCE) in the browser or other highly-privileged process, such as network or GPU process, to result in a sandbox escape without the need of a first stage bug, the reward amount for renderer RCE “high quality report with functional exploit” would be granted and included in the calculation of the bonus reward total.

Based on our current Chrome VRP reward matrix, your full chain exploit could result in a total reward of over $165,000 -$180,000 for the first full chain exploit and over $110,000 – $120,000 for subsequent full chain exploits we receive in the six month window of this reward opportunity.

We’d like to thank our entire Chrome researcher community for your past and ongoing efforts and security bug submissions! You’ve truly helped us make Chrome more secure for all users.

Happy Hunting!

As APIs are a favorite target for threat actors, the challenge of securing the glue that holds various software elements together is taking on increasing urgency

The post All eyes on APIs: Top 3 API security risks and how to mitigate them appeared first on WeLiveSecurity

Introduction

Chrome is trusted by millions of business users as a secure enterprise browser. Organizations can use Chrome Browser Cloud Management to help manage Chrome browsers more effectively. As an admin, they can use the Google Admin console to get Chrome to report critical security events to third-party service providers such as Splunk® to create custom enterprise security remediation workflows.

Security remediation is the process of responding to security events that have been triggered by a system or a user. Remediation can be done manually or automatically, and it is an important part of an enterprise security program.

Why is Automated Security Remediation Important?

When a security event is identified, it is imperative to respond as soon as possible to prevent data exfiltration and to prevent the attacker from gaining a foothold in the enterprise. Organizations with mature security processes utilize automated remediation to improve the security posture by reducing the time it takes to respond to security events. This allows the usually over burdened Security Operations Center (SOC) teams to avoid alert fatigue.

Automated Security Remediation using Chrome Browser Cloud Management and Splunk

Chrome integrates with Chrome Enterprise Recommended partners such as Splunk® using Chrome Enterprise Connectors to report security events such as malware transfer, unsafe site visits, password reuse. Other supported events can be found on our support page.

The Splunk integration with Chrome browser allows organizations to collect, analyze, and extract insights from security events. The extended security insights into managed browsers will enable SOC teams to perform better informed automated security remediations using Splunk® Alert Actions.

Splunk Alert Actions are a great capability for automating security remediation tasks. By creating alert actions, enterprises can automate the process of identifying, prioritizing, and remediating security threats.

In Splunk®, SOC teams can use alerts to monitor for and respond to specific Chrome Browser Cloud Management events. Alerts use a saved search to look for events in real time or on a schedule and can trigger an Alert Action when search results meet specific conditions as outlined in the diagram below.

Use Case

If a user downloads a malicious file after bypassing a Chrome “Dangerous File” message their managed browser/managed CrOS device should be quarantined.

Prerequisites

Setup

  1. Install the Google Chrome Add-on for Splunk App

    Please follow installation instructions here depending on your Splunk Installation to install the Google Chrome Add-on for Splunk App.

  2. Setting up Chrome Browser Cloud Management and Splunk Integration

    Please follow the guide here to set up Chrome Browser Cloud Management and Splunk® integration.

  3. Setting up Chrome Browser Cloud Management API access

    To call the Chrome Browser Cloud Management API, use a service account properly configured in the Google admin console. Create a (or use an existing) service account and download the JSON representation of the key.

    Create a (or use an existing) role in the admin console with all the “Chrome Management” privileges as shown below.

    Assign the created role to the service account using the “Assign service accounts” button.

  4. Setting up Chrome Browser Cloud Management App in Splunk®

    Install the App i.e. Alert Action from our Github page. You will notice that the Splunk App uses the below directory structure. Please take some time to understand the directory structure layout.

  5. Setting up a Quarantine OU in Chrome Browser Cloud Management

    Create a “Quarantine” OU to move managed browsers into. Apply restrictive policies to this OU which will then be applied to managed browsers and managed CrOS devices that are moved to this OU. In our case we set the below policies for our “Quarantine” OU called Investigate.These policies ensure that the quarantined CrOS device/browser can only open a limited set of approved URLS.

Configuration

  1. Start with a search for the Chrome Browser Cloud Management events in the Google Chrome Add-on for Splunk App. For our instance we used the below search query to search for known malicious file download events.
  2. Save the search as an alert. The alert uses the saved search to check for events. Adjust the alert type to configure how often the search runs. Use a scheduled alert to check for events on a regular basis. Use a real-time alert to monitor for events continuously. An alert does not have to trigger every time it generates search results. Set trigger conditions to manage when the alert triggers. Customize the alert settings as per enterprise security policies. For our example we used a real time alert with a per-result trigger. The setup we used is as shown below.
  3. As seen in the screenshot we have configured the Chrome Browser Cloud Management Remediation Alert Action App with

    • The OU Path of the Quarantine OU i.e. /Investigate
    • The Customer Id of the workspace domain
    • Service Account Key JSON value

    Test the setup

    Use the testsafebrowsing website to generate sample security events to test the setup.

    1. Open the testsafebrowsing website
    2. Click the link for line item 4 under the Desktop Download Warnings section i.e. “Should show an “uncommon” warning, for .exe”
    3. You will see a Dangerous Download blocked warning giving you two options to either Discard or Keep the downloaded file. Click on Keep
    4. This will trigger the alert action and move your managed browser or managed CrOS device to the “Quarantine” OU (OU name Investigate in our example) with restricted policies.

    Conclusion

    Security remediation is vital to any organization’s security program. In this blog we discussed configuring automated security remediation of Chrome Browser Cloud Management security events using Splunk alert actions. This scalable approach can be used to protect a company from online security threats by detecting and quickly responding to high fidelity Chrome Browser Cloud Management security events thereby greatly reducing the time to respond.

    Our team will be at the Gartner Security and Risk Management Summit in National Harbor, MD, next week. Come see us in action if you’re attending the summit.