Easy Contact
253 Main Ave, Passaic NJ 07055Call 973-777-5656
info@advantagecomputers.com
Fax 973-777-5821
© 2025 ~ All Rights Reserved
Advantage Computer Solutions, Inc
Company
Services
Testimonials
Zack is amazing! I have gone to him with computer issues for the past few years now and he always finds a way to fix things and at a reasonable price. This time I went to Advantage Computer Solutions to find a new laptop. I needed help because like most of us I had no… Read more “Amazing!”
Cannot say enough good things about Zack Rahhal and his team. Professional, smart, sensitive to small biz budgets and a helluva good guy. Could not operate my small biz without them!
stars indeed. So reliable and helpful and kind and smart. We call Al and he is “on it” immediately and such a FABULOUS teacher, patient and terrific. So happy with Advantage Computer Solutions and Al and his AMAZINGLY WONDERFUL STAFF.
I’ve been a customer of the staff at Advantage for many years now. They have never let me down! Whatever my need, however big or small my problem, they have been unfailingly helpful, friendly and professional. Services are performed promptly and effectively, and they are very fair with pricing, too. I am lucky to have… Read more “Whatever my need, unfailingly helpful”
I’ve known the Advantage Team for years. They are the absolute best techs in the field, bar none. I couldn’t tell you how many tens thousands of dollars they saved us over the years; they can be trusted to never scam anyone even though they would do so very easily. The turnaround time is also… Read more “Best Kept Secret”
I had an excellent experience with Advantage. Aside from being extremely professional and pleasant generally, Zack was incredibly responsive and helpful, even before and after my appointment, and really resolved IT issues in my home office that had been plaguing me for years. I am so relieved to not have to think about this anymore!… Read more “Excellent Experience”
Simply The Best! Our company has been working with Advantage Computer Solutions for a few years, Zack and his Team are AWESOME! They are super reliable – whether it’s everyday maintenance or emergencies that may arise, The Advantage Team take care of us! Our team is grateful for their knowledgeable and professional services – a… Read more “Simply The Best!”
The engineering team at Advantage Computers is the best in the business. They are nothing short of technical wizards.
Al, Nasser and Zack have been keeping our operations going for over a decade, taking care of our regular upgrades and our emergency system problems. When we have an emergency, they make it their emergency. Its like having a cousin in the business.
In many cases, exceptional people do not receive recognition for their hard work and superior customer service. We do not want this to be one of those times. Zack Rahhal has been our hardware and technical consultant for our servers, Pc’s and other technical equipment since April 2004 and has provided valuable input and courteous service to… Read more “Exceptional People”
I became a customer about 6-7 months and I can say nothing but great things about this business. Zack takes care of me. I am an attorney and operate my own small firm. I have limited knowledge of computers. Zack is very patient in explaining things. He has offered practical and economical solutions to multiple… Read more “Highly Recommended”
THANK GOD for this local computer repair business who saved me hundreds, my hard drive was messed up, i called the company with warranty they said it would be $600, I went in they did a quick diagnostic, and based on his observations he gave me a step by step of the possible problems and… Read more “Life Savers”
I don’t have enough words to express my appreciation for Nassar and Paul, and the other members of Advantage Computer Solutions. I live in Bergen County and travel to Passaic County because of the trust I have in the competence and honesty of Advantage Computers. What a blessing to have such seasoned and caring professionals… Read more “I don’t have enough words to express my appreciation”
Advantage Computer Solutions is absolutely great. They show up, do what they say they are going to, complete the job without issues (my other computer companies had to keep coming back to fix things they “forgot” to do….) and are fairly priced. Zack is awesome, reliable, dependable, knowledgeable….everything you want in a computer solutions vendor.
Knowledgeable, Reliable, Reasonable Working with Advantage Computers since 1997 for both personal and business tech support has been a rewarding and enjoyable experience. Rewarding, in that the staff is very knowledgeable, approaching needs and issues in a very straightforward, common sense manner, resulting in timely solutions and resolutions. Enjoyable, these guys are really friendly (not… Read more “Knowledgeable, Reliable, Reasonable”
Excellent service! I am the administrator for a busy medical office which relies heavily on our computer system. We have used Advantage Computer Solutions for installation, set-up and for service. The response time is immediate and the staff is often able to provide help remotely. Very affordable and honest…. A++!!! Essex Surgical relies on Advantage… Read more “Excellent service!”
Advantage offers great advice and service I bought parts for my gaming pc online and they put it together in a day for a great price. They are very professional. I was very satisfied with their service. I am a newbie in terms of PC gaming so they gave me great advice on this new piece… Read more “Great Advice and Service”
Our company has been using the services of Advantage Computers since 2006. It was important to find a reliable company to provide us with the technical support both onsite and offsite. It was through a recommendation that we contacted Advantage to have them provide us with a quote to install a new server and update our… Read more “Great Service, Support and Sales”
Our company has been working with Advantage since the 1990’s and have been a loyal client ever since. Advantage does not make it very difficult to be loyal as they offer services from the most intricate and personalized to the global scale. Our company has grown beyond its doors of a local office to National… Read more “Extremely Professional and Passionate”
Advantage Computer Solutions has handled all of our computer and IT needs for the past 2 years. The staff is always professional and the service is always prompt. When your computers are down or not working properly is affects all aspects of your business, it is wonderful to have such a reliable team on our… Read more “Handles all our Office IT”
Since 1996 the Housing Authority of the City of Passaic has been a client of Advantage Computer Solutions. Our Agency has utilized their outstanding services and expertise to solve our technologic problems and growth over the past eighteen years. We would like to personally thank them for proposing cost effective solutions while reducing labor-intense tasks… Read more “Passaic Housing Authority”
“When the computer I use to run my photography business started acting erratically and kept shutting down, I was in a panic. I depend on that computer to deliver final products to my clients. Fortunately, I brought my HP into Advantage for repair and in one day I had my computer back. Not only did… Read more “They made sure EVERYTHING was working”
Scams targeting NFT investors – Week in security with Tony Anscombe
As with everything digital, there’s someone, somewhere devising a method to steal the assets away from their rightful owners
The post Scams targeting NFT investors – Week in security with Tony Anscombe appeared first on WeLiveSecurity
Cybersecurity: A global problem that requires a global answer
New and exacerbated cyber-risks following Russia’s invasion of Ukraine are fueling a new urgency towards enhancing resilience
The post Cybersecurity: A global problem that requires a global answer appeared first on WeLiveSecurity
Retrofitting Temporal Memory Safety on C++
Posted by Anton Bikineev, Michael Lippautz and Hannes Payer, Chrome security team
Memory safety in Chrome is an ever-ongoing effort to protect our users. We are constantly experimenting with different technologies to stay ahead of malicious actors. In this spirit, this post is about our journey of using heap scanning technologies to improve memory safety of C++.
Let’s start at the beginning though. Throughout the lifetime of an application its state is generally represented in memory. Temporal memory safety refers to the problem of guaranteeing that memory is always accessed with the most up to date information of its structure, its type. C++ unfortunately does not provide such guarantees. While there is appetite for different languages than C++ with stronger memory safety guarantees, large codebases such as Chromium will use C++ for the foreseeable future.
auto* foo = new Foo();
delete foo;
// The memory location pointed to by foo is not representing
// a Foo object anymore, as the object has been deleted (freed).
foo->Process();
In the example above, foo is used after its memory has been returned to the underlying system. The out-of-date pointer is called a dangling pointer and any access through it results in a use-after-free (UAF) access. In the best case such errors result in well-defined crashes, in the worst case they cause subtle breakage that can be exploited by malicious actors.
UAFs are often hard to spot in larger codebases where ownership of objects is transferred between various components. The general problem is so widespread that to this date both industry and academia regularly come up with mitigation strategies. The examples are endless: C++ smart pointers of all kinds are used to better define and manage ownership on application level; static analysis in compilers is used to avoid compiling problematic code in the first place; where static analysis fails, dynamic tools such as C++ sanitizers can intercept accesses and catch problems on specific executions.
Chrome’s use of C++ is sadly no different here and the majority of high-severity security bugs are UAF issues. In order to catch issues before they reach production, all of the aforementioned techniques are used. In addition to regular tests, fuzzers ensure that there’s always new input to work with for dynamic tools. Chrome even goes further and employs a C++ garbage collector called Oilpan which deviates from regular C++ semantics but provides temporal memory safety where used. Where such deviation is unreasonable, a new kind of smart pointer called MiraclePtr was introduced recently to deterministically crash on accesses to dangling pointers when used. Oilpan, MiraclePtr, and smart-pointer-based solutions require significant adoptions of the application code.
Over the last decade, another approach has seen some success: memory quarantine. The basic idea is to put explicitly freed memory into quarantine and only make it available when a certain safety condition is reached. Microsoft has shipped versions of this mitigation in its browsers: MemoryProtector in Internet Explorer in 2014 and its successor MemGC in (pre-Chromium) Edge in 2015. In the Linux kernel a probabilistic approach was used where memory was eventually just recycled. And this approach has seen attention in academia in recent years with the MarkUs paper. The rest of this article summarizes our journey of experimenting with quarantines and heap scanning in Chrome.
(At this point, one may ask where pointer authentication fits into this picture – keep on reading!)
Quarantining and Heap Scanning, the Basics
The main idea behind assuring temporal safety with quarantining and heap scanning is to avoid reusing memory until it has been proven that there are no more (dangling) pointers referring to it. To avoid changing C++ user code or its semantics, the memory allocator providing new and delete is intercepted.
Upon invoking delete, the memory is actually put in a quarantine, where it is unavailable for being reused for subsequent new calls by the application. At some point a heap scan is triggered which scans the whole heap, much like a garbage collector, to find references to quarantined memory blocks. Blocks that have no incoming references from the regular application memory are transferred back to the allocator where they can be reused for subsequent allocations.
There are various hardening options which come with a performance cost:
Overwrite the quarantined memory with special values (e.g. zero);
Stop all application threads when the scan is running or scan the heap concurrently;
Intercept memory writes (e.g. by page protection) to catch pointer updates;
Scan memory word by word for possible pointers (conservative handling) or provide descriptors for objects (precise handling);
Segregation of application memory in safe and unsafe partitions to opt-out certain objects which are either performance sensitive or can be statically proven as being safe to skip;
Scan the execution stack in addition to just scanning heap memory;
We call the collection of different versions of these algorithms StarScan [stɑː skæn], or *Scan for short.
Reality Check
We apply *Scan to the unmanaged parts of the renderer process and use Speedometer2 to evaluate the performance impact.
We have experimented with different versions of *Scan. To minimize performance overhead as much as possible though, we evaluate a configuration that uses a separate thread to scan the heap and avoids clearing of quarantined memory eagerly on delete but rather clears quarantined memory when running *Scan. We opt in all memory allocated with new and don’t discriminate between allocation sites and types for simplicity in the first implementation.
Note that the proposed version of *Scan is not complete. Concretely, a malicious actor may exploit a race condition with the scanning thread by moving a dangling pointer from an unscanned to an already scanned memory region. Fixing this race condition requires keeping track of writes into blocks of already scanned memory, by e.g. using memory protection mechanisms to intercept those accesses, or stopping all application threads in safepoints from mutating the object graph altogether. Either way, solving this issue comes at a performance cost and exhibits an interesting performance and security trade-off. Note that this kind of attack is not generic and does not work for all UAF. Problems such as depicted in the introduction would not be prone to such attacks as the dangling pointer is not copied around.
Since the security benefits really depend on the granularity of such safepoints and we want to experiment with the fastest possible version, we disabled safepoints altogether.
Running our basic version on Speedometer2 regresses the total score by 8%. Bummer…
Where does all this overhead come from? Unsurprisingly, heap scanning is memory bound and quite expensive as the entire user memory must be walked and examined for references by the scanning thread.
To reduce the regression we implemented various optimizations that improve the raw scanning speed. Naturally, the fastest way to scan memory is to not scan it at all and so we partitioned the heap into two classes: memory that can contain pointers and memory that we can statically prove to not contain pointers, e.g. strings. We avoid scanning memory that cannot contain any pointers. Note that such memory is still part of the quarantine, it is just not scanned.
We extended this mechanism to also cover allocations that serve as backing memory for other allocators, e.g., zone memory that is managed by V8 for the optimizing JavaScript compiler. Such zones are always discarded at once (c.f. region-based memory management) and temporal safety is established through other means in V8.
On top, we applied several micro optimizations to speed up and eliminate computations: we use helper tables for pointer filtering; rely on SIMD for the memory-bound scanning loop; and minimize the number of fetches and lock-prefixed instructions.
We also improve upon the initial scheduling algorithm that just starts a heap scan when reaching a certain limit by adjusting how much time we spent in scanning compared to actually executing the application code (c.f. mutator utilization in garbage collection literature).
In the end, the algorithm is still memory bound and scanning remains a noticeably expensive procedure. The optimizations helped to reduce the Speedometer2 regression from 8% down to 2%.
While we improved raw scanning time, the fact that memory sits in a quarantine increases the overall working set of a process. To further quantify this overhead, we use a selected set of Chrome’s real-world browsing benchmarks to measure memory consumption. *Scan in the renderer process regresses memory consumption by about 12%. It’s this increase of the working set that leads to more memory being paged in which is noticeable on application fast paths.
Hardware Memory Tagging to the Rescue
MTE (Memory Tagging Extension) is a new extension on the ARM v8.5A architecture that helps with detecting errors in software memory use. These errors can be spatial errors (e.g. out-of-bounds accesses) or temporal errors (use-after-free). The extension works as follows. Every 16 bytes of memory are assigned a 4-bit tag. Pointers are also assigned a 4-bit tag. The allocator is responsible for returning a pointer with the same tag as the allocated memory. The load and store instructions verify that the pointer and memory tags match. In case the tags of the memory location and the pointer do not match a hardware exception is raised.
MTE doesn’t offer a deterministic protection against use-after-free. Since the number of tag bits is finite there is a chance that the tag of the memory and the pointer match due to overflow. With 4 bits, only 16 reallocations are enough to have the tags match. A malicious actor may exploit the tag bit overflow to get a use-after-free by just waiting until the tag of a dangling pointer matches (again) the memory it is pointing to.
*Scan can be used to fix this problematic corner case. On each delete call the tag for the underlying memory block gets incremented by the MTE mechanism. Most of the time the block will be available for reallocation as the tag can be incremented within the 4-bit range. Stale pointers would refer to the old tag and thus reliably crash on dereference. Upon overflowing the tag, the object is then put into quarantine and processed by *Scan. Once the scan verifies that there are no more dangling pointers to this block of memory, it is returned back to the allocator. This reduces the number of scans and their accompanying cost by ~16x.
The following picture depicts this mechanism. The pointer to foo initially has a tag of 0x0E which allows it to be incremented once again for allocating bar. Upon invoking delete for bar the tag overflows and the memory is actually put into quarantine of *Scan.
We got our hands on some actual hardware supporting MTE and redid the experiments in the renderer process. The results are promising as the regression on Speedometer was within noise and we only regressed memory footprint by around 1% on Chrome’s real-world browsing stories.
Is this some actual free lunch? Turns out that MTE comes with some cost which has already been paid for. Specifically, PartitionAlloc, which is Chrome’s underlying allocator, already performs the tag management operations for all MTE-enabled devices by default. Also, for security reasons, memory should really be zeroed eagerly. To quantify these costs, we ran experiments on an early hardware prototype that supports MTE in several configurations:
MTE disabled and without zeroing memory;
MTE disabled but with zeroing memory;
MTE enabled without *Scan;
MTE enabled with *Scan;
(We are also aware that there’s synchronous and asynchronous MTE which also affects determinism and performance. For the sake of this experiment we kept using the asynchronous mode.)
The results show that MTE and memory zeroing come with some cost which is around 2% on Speedometer2. Note that neither PartitionAlloc, nor hardware has been optimized for these scenarios yet. The experiment also shows that adding *Scan on top of MTE comes without measurable cost.
Conclusions
C++ allows for writing high-performance applications but this comes at a price, security. Hardware memory tagging may fix some security pitfalls of C++, while still allowing high performance. We are looking forward to see a more broad adoption of hardware memory tagging in the future and suggest using *Scan on top of hardware memory tagging to fix temporary memory safety for C++. Both the used MTE hardware and the implementation of *Scan are prototypes and we expect that there is still room for performance optimizations.
ESET Research Podcast: UEFI in crosshairs of ESPecter bootkit
Listen to Aryeh Goretsky, Martin Smolár, and Jean-Ian Boutin discuss what UEFI threats are capable of and what the ESPecter bootkit tells us about their evolution
The post ESET Research Podcast: UEFI in crosshairs of ESPecter bootkit appeared first on WeLiveSecurity
5 reasons why GDPR was a milestone for data protection
The landmark regulation changed everyone’s mindset on how companies worldwide collect and use the personal data of EU citizens
The post 5 reasons why GDPR was a milestone for data protection appeared first on WeLiveSecurity
Common NFT scams and how to avoid them
As NFTs exploded in popularity, scammers also jumped on the hype. Watch out for counterfeit NFTs, rug pulls, pump-and-dumps and other common scams plaguing the industry.
The post Common NFT scams and how to avoid them appeared first on WeLiveSecurity
Cryptocurrency: secure or not? – Week in security with Tony Anscombe
When you hear the term ‘cryptocurrency’, does ‘secure’ also spring to mind? Here are some implications of the lack of sound security practices in the world of crypto.
The post Cryptocurrency: secure or not? – Week in security with Tony Anscombe appeared first on WeLiveSecurity
Sandworm uses a new version of ArguePatch to attack targets in Ukraine
ESET researchers spot an updated version of the malware loader used in the Industroyer2 and CaddyWiper attacks
The post Sandworm uses a new version of ArguePatch to attack targets in Ukraine appeared first on WeLiveSecurity
The flip side of the coin: Why crypto is catnip for criminals
Cybercriminals continue to mine for opportunities in the crypto space – here’s what you should know about coin-mining hacks and crypto theft
The post The flip side of the coin: Why crypto is catnip for criminals appeared first on WeLiveSecurity
Privileged pod escalations in Kubernetes and GKE
Posted by GKE and Anthos Platform Security Teams
At the KubeCon EU 2022 conference in Valencia, security researchers from Palo Alto Networks presented research findings on “trampoline pods”—pods with an elevated set of privileges required to do their job, but that could conceivably be used as a jumping off point to gain escalated privileges.
The research mentions GKE, including how developers should look at the privileged pod problem today, what the GKE team is doing to minimize the use of privileged pods, and actions GKE users can take to protect their clusters.
While privileged pods can pose a security issue, it’s important to look at them within the overall context of GKE security. To use a privileged pod as a “trampoline” in GKE, there is a major prerequisite – the attacker has to first execute a successful application compromise and container breakout attack.
Because the use of privileged pods in an attack requires a first step such as a container breakout to be effective, let’s look at two areas:
There are a number of features in GKE along with some best practices that you can use to reduce the likelihood of a container breakout:
More information can be found in the GKE Hardening Guide.
While it’s not uncommon for customers to install privileged pods into their clusters, GKE works to minimize the privilege levels held by our system components, especially those that are enabled by default. However, there are limits as to how many privileges can be removed from certain features. For example, Anthos Config Management requires permissions to modify most Kubernetes objects to be able to create and manage those objects.
Some other privileges are baked into the system, such as those held by Kubelet. Previously, we worked with the Kubernetes community to build the Node Restriction and Node Authorizer features to limit Kubelet’s access to highly sensitive objects, such as secrets, adding protection against an attacker with access to the Kubelet credentials.
More recently, we have taken steps to reduce the number of privileged pods across GKE and have added additional documentation on privileges used in system pods as well as information on how to improve pod isolation. Below are the steps we’ve taken:
In addition to the measures above, we recommend users take advantage of tools that can scan RBAC settings to detect overprivileged pods used in their applications. As part of their presentation, the Palo Alto researchers announced an open source tool, called rbac-police, that can be used for the task. So, while it only takes a single overprivileged workload to trampoline to the cluster, there are a number of actions you can take to minimize the likelihood of the prerequisite container breakout and the number of privileges used by a pod.